Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors.

نویسندگان

  • Anders S Kristensen
  • Kasper B Hansen
  • Peter Naur
  • Lars Olsen
  • Natalie L Kurtkaya
  • Shashank M Dravid
  • Trine Kvist
  • Feng Yi
  • Jacob Pøhlsgaard
  • Rasmus P Clausen
  • Michael Gajhede
  • Jette S Kastrup
  • Stephen F Traynelis
چکیده

The GluD2 receptor is a fundamental component of postsynaptic sites in Purkinje neurons, and is required for normal cerebellar function. GluD2 and the closely related GluD1 are classified as members of the ionotropic glutamate receptor (iGluR) superfamily on the basis of sequence similarity, but do not bind l-glutamate. The amino acid neurotransmitter D-Ser is a GluD2 receptor ligand, and endogenous D-Ser signaling through GluD2 has recently been shown to regulate endocytosis of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type iGluRs during synaptic plasticity in the cerebellum, such as long-term depression. Here, we investigate the pharmacology of the orthosteric binding site in GluD2 by examining the activity of analogs of D-Ser and GluN1 glycine site competitive antagonists at GluD2 receptors containing the lurcher mutation (GluD2(LC)), which promotes spontaneous channel activation. We identify several compounds that modulate GluD2(LC), including a halogenated alanine analog as well as the kynurenic acid analog 7-chloro-4-oxo-1H-quinoline-2-carboxylic acid (7-chlorokynurenic acid; 7-CKA). By correlating thermodynamic and structural data for 7-CKA binding to the isolated GluD2 ligand binding domain (GluD2-LBD), we find that binding 7-CKA to GluD2-LBD differs from D-Ser by inducing an intermediate cleft closure of the clamshell-shaped LBD. The GluD2 ligands identified here can potentially serve as a starting point for development of GluD2-selective ligands useful as tools in studies of the signaling role of the GluD2 receptor in the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors.

NMDA receptors are ligand-gated ion channels that assemble into tetrameric receptor complexes composed of glycine-binding GluN1 and GluN3 subunits (GluN3A-B) and glutamate-binding GluN2 subunits (GluN2A-D). NMDA receptors can assemble as GluN1/N2 receptors and as GluN3-containing NMDA receptors, which are either glutamate/glycine-activated triheteromeric GluN1/N2/N3 receptors or glycine-activat...

متن کامل

The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel...

متن کامل

A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators.

The metabotropic glutamate receptor subtype 5 (mGlu5) activates calcium mobilization via binding of glutamate, the major excitatory neurotransmitter in the central nervous system. Allosteric modulation of the receptor has recently emerged as a promising alternative method of regulation to traditional regulation through orthosteric ligands. We now report three novel compounds that bind to the al...

متن کامل

Extracellular Loop 2 of the Adenosine A1 Receptor Has a Key Role in Orthosteric Ligand Affinity and Agonist Efficacy.

The adenosine A1 G protein-coupled receptor (A1AR) is an important therapeutic target implicated in a wide range of cardiovascular and neuronal disorders. Although it is well established that the A1AR orthosteric site is located within the receptor's transmembrane (TM) bundle, prior studies have implicated extracellular loop 2 (ECL2) as having a significant role in contributing to orthosteric l...

متن کامل

Exploration of the orthosteric/allosteric interface in human M1 muscarinic receptors by bitopic fluorescent ligands.

Bitopic binding properties apply to a variety of muscarinic compounds that span and simultaneously bind to both the orthosteric and allosteric receptor sites. We provide evidence that fluorescent pirenzepine derivatives, with the M1 antagonist fused to the boron-dipyrromethene [Bodipy (558/568)] fluorophore via spacers of varying lengths, exhibit orthosteric/allosteric binding properties at mus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2016